Skip to content

Chapter 1 - Mathematics

1.5 - Dyads and Tensors

Definition. A dyadic is a representation of two-ish vectors.

\[ \stackrel{\leftrightarrow}{\mathbf{D}} = \begin{matrix} D_{xx} \hat{\mathbf{x}}\hat{\mathbf{x}} &+ D_{xy} \hat{\mathbf{x}}\hat{\mathbf{y}} &+ D{xz} \hat{\mathbf{x}}\hat{\mathbf{z}} \\ + D_{yx} \hat{\mathbf{y}}\hat{\mathbf{x}} &+ D_{yy} \hat{\mathbf{y}}\hat{\mathbf{y}} &+ D{yz} \hat{\mathbf{y}}\hat{\mathbf{z}} \\ + D_{zx} \hat{\mathbf{z}}\hat{\mathbf{x}} &+ D_{zy} \hat{\mathbf{z}}\hat{\mathbf{y}} &+ D{zz} \hat{\mathbf{z}}\hat{\mathbf{z}} \end{matrix} \]

Definition. If a dyadic can be written as a composition of two vectors \(\mathbf{A}\) and \(\mathbf{B}\), it is called a dyad.

\[ \mathbf{AB} = \begin{matrix} A_x B_x \hat{\mathbf{x}}\hat{\mathbf{x}} &+ A_x B_y \hat{\mathbf{x}}\hat{\mathbf{y}} &+ A_x B_z \hat{\mathbf{x}}\hat{\mathbf{z}} \\ + A_y B_x \hat{\mathbf{y}}\hat{\mathbf{x}} &+ A_y B_y \hat{\mathbf{y}}\hat{\mathbf{y}} &+ A_y B_z \hat{\mathbf{y}}\hat{\mathbf{z}} \\ + A_z B_x \hat{\mathbf{z}}\hat{\mathbf{x}} &+ A_z B_y \hat{\mathbf{z}}\hat{\mathbf{y}} &+ A_z B_z \hat{\mathbf{z}}\hat{\mathbf{z}} \end{matrix} \]

The dot product of a dyad \(\stackrel{\leftrightarrow}{\mathbf{D}} = \mathbf{AB}\) and vector \(\mathbf{v}\) can be written as follows:

\[ (\mathbf{AB}) \cdot \mathbf{v} = \mathbf{A} (\mathbf{B} \cdot \mathbf{v}) \]

Definition. A symmetric/antisymmetric dyadic is defined the same way that a matrix is.

Definition. The identity dyadic is \(\stackrel{\leftrightarrow}{\mathbf{I}} = \hat{\mathbf{x}}\hat{\mathbf{x}} + \hat{\mathbf{y}}\hat{\mathbf{y}} + \hat{\mathbf{z}}\hat{\mathbf{z}}\).

Definition. For a tensor, with coordinates \(u^i\), we have two sets of basis vectors:

\[ \mathbf{e}_i = \pdv{\mathbf{r}}{u^i} \]
\[ \mathbf{e}^i = \nabla{u^i} \]

1.9 - Helmholtz Theorem

Given an arbitrary vector field \(\mathbf{F}(\mathbf(r))\), we can write said field as a composition of a curl-free component \(\mathbf{\Phi}(\mathbf{r})\) and a divergence-free component \(\mathbf{A}(\mathbf{r})\) as follows:

\[ \mathbf{F}(\mathbf{r}) = - \nabla{\mathbf{\Phi}(\mathbf{r})} + \nabla \times{\mathbf{A}(\mathbf{r})} \]

Definition. Here, the gradient of the scalar potential is \(\nabla{\mathbf{\Phi}(\mathbf{r})}\) and the curl of the vector potential is \(\nabla \times{\mathbf{A}(\mathbf{r})}\). Thus, the scalar potential is \(\mathbf{\Phi}(\mathbf{r})\) and the vector potential is \(\mathbf{A}(\mathbf{r})\).

Letting said field be over bounded volume \(V\) with closed surface \(\partial V\), and the functions \(\mathbf{C}(\mathbf{r}) = \nabla \times{\mathbf{F}(\mathbf{r})}\) and \(\mathbf{D}(\mathbf{r}) = \nabla \cdot \mathbf{F}(\mathbf{r})\) are known, we can say that

\[ \mathbf{\Phi}(\mathbf{r}) = \frac{1}{4 \pi} \int_V \frac{D(\mathbf{r}')}{|{\mathbf{r}-\mathbf{r}'}|} d{V'} - \frac{1}{4 \pi} \int_{\partial V} \frac{\mathbf{F}(\mathbf{r}') \cdot \mathbf{n}'}{|{\mathbf{r}-\mathbf{r}'}|} d{S'} \]
\[ \mathbf{A}(\mathbf{r}) = \frac{1}{4 \pi} \int_V \frac{C(\mathbf{r}')}{|{\mathbf{r}-\mathbf{r}'}|} d{V'} - \frac{1}{4 \pi} \int_{\partial V} \mathbf{n}' \times \frac{\mathbf{F}(\mathbf{r}')}{|{\mathbf{r}-\mathbf{r}'}|} d{S'} \]

Now, assume that \(\lim(\frac{\mathbf{F}(\mathbf{r})}{\mathbf{r}}) = 0\) as \(\mathbf{r} \rightarrow \infty\), with a large enough volume, we see that the second terms vanish.

\[ \mathbf{\Phi}(\mathbf{r}) = \frac{1}{4 \pi} \int_V \frac{D(\mathbf{r}')}{|{\mathbf{r}-\mathbf{r}'}|} d{V'} \]
\[ \mathbf{A}(\mathbf{r}) = \frac{1}{4 \pi} \int_V \frac{C(\mathbf{r}')}{|{\mathbf{r}-\mathbf{r}'}|} d{V'} \]